That’s So Second Millennium
Episode 019 - Conclusion: SCS Conference

Episode 019 - Conclusion: SCS Conference

August 6, 2018

We pick up from last week's episode with the next speaker. Kara Lamb followed Andrew Sicree; her research is about the atmosphere and climate. She mostly talked about climate, and got a ways into specifics about her research on black carbon soot in the atmosphere. She did stop to draw a parallel between Laudato Si and Pacem in Terris, that in both cases the Popes stopped to address humanity at large and not just the Church.

Juan Martin Maldacena was after her, and was presented the St. Albert Award. You don't schedule Juan Maldacena and not have him talk about his own physics research; he is famous for research on workable forms of string theory in anti-de Sitter space and some results on the shape and nature of black holes. His talk was very technical and rather hard to summarize, but an intriguing aspect of it was the recurring notion that black hole singularities and the original singularity of the Big Bang might have a lot in common.

Sunday morning after Mass Michael Dennin led off with a talk structured around a book called "The Big Picture" by somebody I think I've heard of but don't know why named Sean Carroll. In this book Carroll apparently divides reality into "poetic naturalism", where "poetic" means "stories we tell ourselves about large complicated objects" and "naturalism" means "quantum physics, which is actually reality". Dennin made four points:

  1. Emergence. Reality does not appear to be just quantum physics (or, I would elaborate, not even just a unified theory that somehow gets gravity and relativity united with quantum physics). There are really new laws that emerge as you go to larger, composite, varied objects...the laws of thermodynamics, entropy in particular, are an example.
  2. Physical reality. It's a little much to talk about "reality" so cavlierly; it ignores basically metric tons of philosophical questions people have spent centuries debating. Is physical reality basically sense data? Is it the particles we theorize to be out there to explain, ultimately, our sense data in the context of the experiments we do and the natural objects we observe? Isn't there nonphysical reality: mathematics, wavefunctions (they can't be completely physical), conscious reality / qualia? How can we be sure there aren't nonphysical "forces" acting on physical objects? In some way, don't they have to? (mathematics and logic in some way constrain reality, that's a rumination of mine while writing this)
  3. Free will...the Comptonesque observation that quantum physics leave room for this nonphysical soul or mind to affect the physical body
  4. MIracles. Dennin actually led off the talk with an exercise, asking us to define miracles, and then he went on a fairly vigorous campaign against the idea that miracles ever incorporate the violation of physical law, or at least that they require it, that that should be in the definition. I noted "Contrasting focus on God's will/purpose..." but I cannot really reconstruct what he seemed to be driving at.

Craig Lent, a professor at Notre Dame, went next and gave an interesting talk that interfaced with others. He actually seemed to conflict with Barr in that he commented early on that the "state vector," which had be be the wavefunction since it had the same Greek letter psi for its symbol, contained all the information possible to have about a system and not just one observer's (the concept Barr used). He also addresses the measurement problem, but my note broke off mid-sentence. He went on to summarize the content of Scarani's talk, that Bell inequality experiments all show that the universe is not deterministic. He then addresses the claim that while atom-scale particles show quantum indeterminism, larger stuff does not, and nerves are enough larger that the human brain must be deterministic. That's probably not true; even 10,000 atomic mass unit molecules like neural transmitters show quantum behavior in experiments. We are left again with the Arthur Compton point that while obviously physics constrains us, our brains are not deterministic machines; if our souls are not affecting them, then at the very least some of their functionality is random.

The final talk was by (Padre) Javier Sanchez-Canizares on "Mind, Decoherence, and the Copenhagen Interpretation." This again comments on many of the topics in previous talks. Unfortunately the talk seemed to paw about problems already discussed without coming to any new realizations. I cannot tell from my notes whether I learned anything about decoherence, which I was really hoping to do; I think I had to look it up afterward, and even then the answers I've found so far are not satisfying. He asked the "Wigner's friend" question that Barr mentioned about the "cut" between the observer and the system in a quantum physics observation. He also made some intriguing comments on the nature of classical physics: if quantum physics is reality, why is it so hard to get rid of classical physics terminology? We still describe things that way. A recent physicist, Zurek, comments that classical physics entities somehow embody a "survival of the fittest" (the sort of comment I start questioning for influence of the divine name of evolution). Heisenberg apparently said that classical physics terms are just unavoidably part of how humans interact with the world.

Episode 016 - Valerio Scarani at the Society of Catholic Scientists Conference 2018

Episode 016 - Valerio Scarani at the Society of Catholic Scientists Conference 2018

July 16, 2018

Dr. Scarani opened the talk by noting a paper he placed on arxiv.org about Aquinas and the sense that the universe would not be perfect without randomness.

He moved on to discuss randomness in two senses: Process Randomness, which implies that there is an observer unable to predict the output of the process; and Product Randomness, the lack of structure of a product, which turns out to equate with the need for a very long algorithm to replicate the product. Products are tested for randomness by a battery of statistical tests. He gave an equation embodying a mathematical definition of [product] randomness. Not being an information theorist, I had not seen it before.

He went on to note the difference between the randomness of classical physics, which is always about a lack of complete information about a system. If one had that information, the system under the classical assumption would be perfectly defined, and as we have noted a number of times, Einstein among others desperately wanted to get back to that deterministic paradigm. "The Old One doesn't throw dice."

The core of the talk was what Scarani called a "high school level" presentation of Bell's theorem. I would like to meet the high school student who could follow it at the speed at which he gave the talk, but probably could have unpacked it given a couple of hours to do so even at that age. Bell's theorem is one of those cunning little mathematical gems that seems to prove the unprovable, namely, to make a prediction about something going on in a process one by definition cannot see into. Bell sets up a statistic that, if there are hidden rules governing physics below the scale at which the uncertainty principle lets us see, must nevertheless in real experiments end up being less than 2. Since the 1980s a series of ever more careful experiments have been done, and the answers in the papers Scarani reviewed had answers between 2.4 and 2.7; the answer is never below 2. According to Bell's theorem, this means that there is a really random process going on down there, and not just random products.

At the end, as we discuss in the audio, Scarani ran down the list of remaining possibilities for understanding the quantum foundations of the universe:
- There is real randomness.
- "Superdeterminism." This depends on breaking an assumption of the Bell theorem, which is that the quantum process is being fed input that itself is not really random from the perspective of that process, which would seem to imply some sort of physics puppet master controlling the experimenter.
- The many worlds hypothesis, again something we have mentioned a number of times. I am still not buying that stock.
- The only allowable sort of hidden variables (the name Bohm is attached to the most commonly discussed of these) would require particles communicating with each other at infinite speed, "deliberately" trying to wreck the experiment, and with the interaction hidden in a way workers in the field have called "conspiratorially hidden." I.e., we would be living in a universe run by a sort of Cartesian evil deity.

On that theme, note that I blundered off into talking in a sort of Cartesian dualist fashion about the relationship between soul and body there after the 14 or 15 minute mark.

Episode 015 - Stephen Barr at the Society of Catholic Scientists Conference 2018

Episode 015 - Stephen Barr at the Society of Catholic Scientists Conference 2018

July 9, 2018

In today's episode we discuss Stephen Barr's talk at the SCS conference on June 9. His topic was the observer question in quantum mechanics. The observer problem is closely tied to the issue of probability and wavefunctions. We spend quite a while discussing what this problem is and how the question arises in the context of experiments like the famous two-slit experiment. The example of "Schrodinger's Cat" is an attempt to make this problem more understandable to the non-quantum mechanic. The cat is in some uncertain state, neither alive nor dead, until the observer opens the box and "collapses the wavefunction" to either a live cat or a dead one. In a two-slit experiment, a particle exists in some distribution of possible positions until an observer collapses the wavefunction and "forces" it to one tight range of locations (and for that matter momenta...).

This is very weird. Barr cited a long list of quantum theorists (von Neumann, London, Bauer, Wigner, Peierls, and others) who considered the problem and whether mind as such is crucial to whatever it is that does the measuring and observing to collapse quantum systems. Wavefunctions, with their consequent probability distributions, evolve according to Schrodinger's [or Dirac's?...a question I've had in the back of my mind many times...] equation with no internal mechanism to cause this collapse. Clearly two very unlike things interact to form quantum mechanics as we know it, as von Neumann stated explicitly (calling the observer / collapse phenomenon "process 1" and the wavefunction evolution "process 2").

It is clear that we can shift our mathematical formalism to incorporate any physical measurment device into the "system" and thus recognize it to be in the realm of wavefunction behavior. There is the "Wigner's friend" thought problem where even a human observer of an experimental setup can be placed in the "box" from the point of view of another human observer.

When we consider the observer problem from the point of view of a descriptive science (geology, astronomy, zoology, etc.) there is the immediate and rather alarming philosophical question: What was happening to, say, this star or tectonic plate or ancestral population of invertebrates before there was an observer to collapse the wavefunctions? Someone raised this question with Dr. Barr in the question and answer session after the talk. There is a phenomenon called "decoherence" (warning: that link is informative in places but far from the clearest read) which occurs for systems that are very open, interacting with their surroundings. Broadly speaking, the observable in question can trade uncertainty with its surrounding and settles down into a tighter range of possible states, simulating to some extent the effect of an observer collapsing the wavefunction. However, the two phenomena are not the same.

Episode 013 - Human Mind and Physicalism (Society of Catholic Scientists Conference 2018)

Episode 013 - Human Mind and Physicalism (Society of Catholic Scientists Conference 2018)

June 25, 2018

Intro
Overview of the conference - schedule
Talks
Edward Feser & connections to Bishop Barron
Theme: Human Mind & Physicalism
Development of the problem and the amazing change in intellectual climate since the 19th century
Laplace and absolute determinism - 19th century consensus

Quantum mechanics demolished this intellectual basis for determinism, although it is clung to fiercely down to the present day, including the profoundly horrifying "many worlds" hypothesis

Bell inequality and the talk by Valerio Scarani about the closing of the loopholes that would allow a "hidden variables" interpretation of quantum mechanics (which would also save determinism, in a much saner way than the "many worlds" hypothesis)

Materialism and "spiritualism" (if you will) are on an equal logical footing, even if cultural issues continue to propel many scientists and intellectual citizens of the contemporary world away from belief in extramaterial beings

Society of Catholic Scientists as a place of refuge from this social pressure toward materialism

The gap between spiritual and material in ancient thought versus modern thought

The problem of qualia, choice, and consciousness and the lack of an actual materialist model for these, as opposed to evasive and reductionist language

On the other hand, the reality of a physical manifestation of all (or nearly all) mental phenomena, the dignity of matter in this detailed participation, and the absolute need for human souls to have bodies in order to be complete human beings (in contrast to Manichean, Platonic, or Cartesian dualism)

The scholastic notion of the human soul as form of the body
The Aristotelian soul / souls
Are vegetative (and animal) souls the forms of those bodies...are those essentially their genetic structure?
This ties back to our existing discussions about "hylomorphism for the third millennium" (so to speak)

The need for a new metaphysics and philosophy in general to rise up and deal with the strange new world that modern science has brought to our attention.

The scholastics, Aquinas of course being the one we remember, had a philosophy that was capable of being constructive...Chesterton's comment that modern philosophers ask us to accept some crazy thing in order to found their system, while Aquinas' starting point was common sense.

The difficulty of thinking and doing interdisciplinary scholarship in the modern world, despite decades of recognizing that we need to do it, due to the volume of human knowledge today and also the whole economic and sociological apparatus that depends on measuring scholars' output somehow...which is tremendously easier for single-focus scholars to maximize.

There is a unique joy that we can have as scientists of faith...both in our subject matter and in our fellowship with each other.

Our next few episodes will look at the subject matter of specific talks at the conference.

Episode 005 - Evolution in Biology, Physics, and Faith

Episode 005 - Evolution in Biology, Physics, and Faith

May 1, 2018

Bill asks about whether evolution and the randomness it seems to imply are problematic for faith. Paul discusses the difference between evolution in biology (with a succession of species) and physics (where new laws layer on top of old laws without destroying them). We talk about the mindsets of physicists and biologists, and tangle more with that problematic phrase "shades of gray." Bill confronts Paul with Einstein's comment that "God does not play dice," and Paul responds with commentary mostly from Harvey Brown and Steven Barr about the alternative interpretations of quantum theory: hidden variables and determinism, or the Copenhagen sense that the probabilistic interpretation of quantum events is physically, ontologically, metaphysically real, and the room in the Copenhagen interpretation for interactions between the spiritual (souls, God) and the physical (body, miracles).

Episode 004 - Complexity, Cosmic Evolution, Change and Certainty

Episode 004 - Complexity, Cosmic Evolution, Change and Certainty

April 23, 2018

Paul elaborates on how the hylomorphic principle, if anything, fits quantum physics better than it fit the world the medievals knew. Bill asks whether the worldview of people of faith is too rigid, while that of the secular masses is too loose. Paul wonders what "shades of gray" really means, and points out that even though the materialist worldview has become harder and more dogmatic, 20th century physics really exploded its scientific foundation. This epsiode brought to you by Arthur Compton's Freedom of Man and Stephen Barr's Modern Physics and Ancient Faith.

Episode 003 - Metaphysics and the Divorce between Science and Philosophy

Episode 003 - Metaphysics and the Divorce between Science and Philosophy

April 16, 2018

Bill and Paul talk about whether the old convention of hylomorphism at least initially seems to describe the world of quantum physics, the medieval dispute over plurality of forms, and the degree to which science and philosophy became delinked in the late second millennium.

Episode 002 - Is Your Metaphysics Up for This?

Episode 002 - Is Your Metaphysics Up for This?

April 9, 2018

What is metaphysics, and is it any more relevant to modern life than Casper the Friendly Ghost? Paul discusses how the ancient metaphysical framework of matter and form (hylomorphism) involves some tricky terms for us moderns but can still make sense of some examples of scientific issues from mineralogy and zoology. Next week we see if it can cope with undergrad quantum physics...

Bonus Episode - Paul

Bonus Episode - Paul

March 27, 2018

Paul (Giesting!) describes his intellectual and spiritual journey and why he's part of That's So Second Millennium.

TSSM - Trailer

TSSM - Trailer

March 27, 2018

Is it really true that science and religion are polar opposites? Must one be true and the other false? What must the universe be like if BOTH are true at the same time? Join Bill and Paul, a Catholic journalist and scientist, as we explore intellectual ground millennia old and cutting edge, from the realms of physics, philosophy, neuroscience, psychology, geology, and more from the perspective of people who take their faith AND their science seriously.